Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells.

نویسندگان

  • Fumihiro Sanada
  • Yoshiaki Taniyama
  • Kazuma Iekushi
  • Junya Azuma
  • Keita Okayama
  • Hiroshi Kusunoki
  • Nobutaka Koibuchi
  • Takefumi Doi
  • Yoshifusa Aizawa
  • Ryuichi Morishita
چکیده

RATIONALE Neointimal hyperplasia contributes to atherosclerosis and restenosis after percutaneous coronary intervention. Vascular injury in each of these conditions results in the release of mitogenic growth factors and hormones that contribute to pathological vascular smooth muscle cell growth and inflammation. Hepatocyte growth factor (HGF) is known as an antiinflammatory growth factor, although it is downregulated in injured tissue. However, the precise mechanism how HGF reduces inflammation is unclear. OBJECTIVE To elucidate the mechanism how HGF and its receptor c-Met reduces angiotensin II (Ang II)-induced inflammation. METHODS AND RESULTS HGF reduced Ang II-induced vascular smooth muscle cell growth and inflammation by controlling translocation of SHIP2 (Src homology domain 2-containing inositol 5'-phosphatase 2), which led to Ang II-dependent degradation of epithelial growth factor receptor. Moreover, the present study also revealed a preventive effect of HGF on atherosclerotic change in an Ang II infusion and cuff HGF transgenic mouse model. CONCLUSIONS These data suggest that the HGF/c-Met system might regulate extrinsic factor signaling that maintains the homeostasis of organs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatocyte growth factor inhibits lipopolysaccharide-induced oxidative stress via epithelial growth factor receptor degradation.

OBJECTIVE Lipopolysaccharide (LPS) triggers sepsis and systemic inflammatory response syndrome, which results in multiple organ failure. Our recent reports demonstrated that hepatocyte growth factor (HGF) attenuated angiotensin II-induced oxidative stress via epithelial growth factor receptor (EGFR) degradation in vascular smooth muscle cells. Here, we examined whether HGF can protect against s...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells

Angiostatin, an inhibitor of angiogenesis, contains 3 to 4 kringle domains that are derived from proteolytic cleavage of plasminogen. The antiangiogenic effects of angiostatin occur, in part, from its inhibition of endothelial cell surface adenosine triphosphate synthase, integrin functions, and pericellular proteolysis. Angiostatin has structural similarities to hepatocyte growth factor (HGF; ...

متن کامل

Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells.

Angiostatin, an inhibitor of angiogenesis, contains 3 to 4 kringle domains that are derived from proteolytic cleavage of plasminogen. The antiangiogenic effects of angiostatin occur, in part, from its inhibition of endothelial cell surface adenosine triphosphate synthase, integrin functions, and pericellular proteolysis. Angiostatin has structural similarities to hepatocyte growth factor (HGF; ...

متن کامل

Vascular origin of a soluble truncated form of the hepatocyte growth factor receptor (c-met).

Hepatocyte growth factor (scatter factor) is an angiogenic growth factor that binds to its cellular transmembrane receptor, c-met. Both HGF and c-met are expressed by vascular smooth muscle and endothelial cells, where HGF may exert autocrine and paracrine effects. We have found that human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVECs) release a soluble,...

متن کامل

Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis.

Hepatocyte growth factor/scatter factor (HGF/SF) acts through the membrane-anchored Met receptor tyrosine kinase to induce invasive growth. Deregulation of this signaling is associated with tumorigenesis and involves, in most cases, overexpression of the receptor. We demonstrate that Met is processed in epithelial cells by presenilin-dependent regulated intramembrane proteolysis (PS-RIP) indepe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 105 7  شماره 

صفحات  -

تاریخ انتشار 2009